Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.433
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612700

RESUMO

Drug hypersensitivity reactions (DHRs) to platinum-based compounds (PCs) are on the rise, and their personalized and safe management is essential to enable first-line treatment for these cancer patients. This study aimed to evaluate the usefulness of the basophil activation test by flow cytometry (BAT-FC) and the newly developed sIgE-microarray and BAT-microarray in diagnosing IgE-mediated hypersensitivity reactions to PCs. A total of 24 patients with DHRs to PCs (20 oxaliplatin and four carboplatin) were evaluated: thirteen patients were diagnosed as allergic with positive skin tests (STs) or drug provocation tests (DPTs), six patients were diagnosed as non-allergic with negative STs and DPTs, and five patients were classified as suspected allergic because DPTs could not be performed. In addition, four carboplatin-tolerant patients were included as controls. The BAT-FC was positive in 2 of 13 allergic patients, with a sensitivity of 15.4% and specificity of 100%. However, the sIgE- and BAT-microarray were positive in 11 of 13 DHR patients, giving a sensitivity of over 84.6% and a specificity of 90%. Except for one patient, all samples from the non-allergic and control groups were negative for sIgE- and BAT-microarray. Our experience indicated that the sIgE- and BAT-microarray could be helpful in the endophenotyping of IgE-mediated hypersensitivity reactions to PCs and may provide an advance in decision making for drug provocation testing.


Assuntos
Hipersensibilidade a Drogas , Hipersensibilidade Imediata , Poliquetos , Radiossensibilizantes , Tionas , Humanos , Animais , Teste de Degranulação de Basófilos , Compostos de Platina , Carboplatina/efeitos adversos , Hipersensibilidade a Drogas/diagnóstico , Antineoplásicos Alquilantes , Imunoglobulina E
2.
Cancer Control ; 31: 10732748241246898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605434

RESUMO

BACKGROUND: Percutaneous Hepatic Perfusion (PHP) is a liver directed regional therapy recently FDA approved for metastatic uveal melanoma to the liver involving percutaneous isolation of liver, saturation of the entire liver with high-dose chemotherapy and filtration extracorporeally though in line filters and veno-venous bypass. The procedure is associated with hemodynamic shifts requiring hemodynamic support and blood product resuscitation due to coagulopathy. OBJECTIVE: To assess the cardiac safety and subsequent clinically significant sequalae of this therapy. METHODS: Consecutive PHP procedures done at our center between 2010-2022 were assessed retrospectively. Cardiac risk factors, post procedural cardiac enzymes, electrocardiograms, and transthoracic echocardiograms along with 90-day cardiac outcomes were reviewed. All data were reviewed by cardio-oncologists at our institution. RESULTS: Of 37 patients reviewed, mean age was 63 years and 57% were women. 132 procedures were performed with an average of 3.57 procedures per patient. 68.6% of patients had elevated troponin during at least 1 procedure. No patients were found to have acute coronary syndrome, heart failure, unstable arrhythmias, or cardiac death. No patients had notable echocardiographic changes. 10.8% of patients with positive troponin had asymptomatic transient electrocardiographic changes not meeting criteria for myocardial infarction. One patient had non-sustained ventricular tachycardiac intra-operatively which did not recur subsequently. Three patients died from non-cardiac causes within 90-days. There was no oncology treatment interruption, even in those with troponin elevation. In multivariable analysis, a history of hyperlipidemia was a predictor of postoperative troponin elevation. (P = .042). CONCLUSION: Percutaneous Hepatic Perfusion is safe and associated with a transient, asymptomatic troponin elevation peri-operatively without major adverse cardiac events at 90 days. The observed troponin elevation is likely secondary to coronary demand-supply mismatch related to procedural hemodynamic shifts, hypotension, and anemia.


Percutaneous hepatic perfusion using melphalan in patients with uveal melanoma and liver metastases carries no significant cardiac adverse events.


Assuntos
Neoplasias Hepáticas , Melanoma , Melfalan , Neoplasias Uveais , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Antineoplásicos Alquilantes , Estudos Retrospectivos , Quimioterapia do Câncer por Perfusão Regional/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Recidiva Local de Neoplasia/tratamento farmacológico , Perfusão
3.
Oncol Rep ; 51(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606513

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of malignant brain tumor. Currently, the predominant clinical treatment is the combination of surgical resection with concurrent radiotherapy and chemotherapy, using temozolomide (TMZ) as the primary chemotherapy drug. Lidocaine, a widely used amide­based local anesthetic, has been found to have a significant anticancer effect. It has been reported that aberrant hepatocyte growth factor (HGF)/mesenchymal­epithelial transition factor (MET) signaling plays a role in the progression of brain tumors. However, it remains unclear whether lidocaine can regulate the MET pathway in GBM. In the present study, the clinical importance of the HGF/MET pathway was analyzed using bioinformatics. By establishing TMZ­resistant cell lines, the impact of combined treatment with lidocaine and TMZ was investigated. Additionally, the effects of lidocaine on cellular function were also examined and confirmed using knockdown techniques. The current findings revealed that the HGF/MET pathway played a key role in brain cancer, and its activation in GBM was associated with increased malignancy and poorer patient outcomes. Elevated HGF levels and activation of its receptor were found to be associated with TMZ resistance in GBM cells. Lidocaine effectively suppressed the HGF/MET pathway, thereby restoring TMZ sensitivity in TMZ­resistant cells. Furthermore, lidocaine also inhibited cell migration. Overall, these results indicated that inhibiting the HGF/MET pathway using lidocaine can enhance the sensitivity of GBM cells to TMZ and reduce cell migration, providing a potential basis for developing novel therapeutic strategies for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Lidocaína/farmacologia , Lidocaína/uso terapêutico , Transdução de Sinais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Movimento Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos Alquilantes/farmacologia
4.
Cells ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607071

RESUMO

Adjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs). Using CellTiter-Glo® and Caspase-3 activity assays, we generated dose-response curves and analyzed the gene and protein regulation of anti-apoptotic proteins via PCR and Western blots. Optimal drug combinations were examined for their impact on the cell cycle and apoptosis induction via FACS analysis, paralleled by the assessment of potential toxicity in healthy mouse brain slices. Ara-C and MTX proved to be 150- to 10,000-fold more potent in inducing apoptosis than TMZ. In response to inhibitors Eltanexor (XPO1; E), Venetoclax (Bcl-2; V), and A1210477 (Mcl-1; A), genes encoding for the corresponding proteins were upregulated in a compensatory manner. TMZ, MTX, and Ara-C combined with E, V, and A evidenced highly lethal effects when combined. As no significant cell death induction in mouse brain slices was observed, we conclude that this drug combination is effective in vitro and expected to have low side effects in vivo.


Assuntos
Amidas , Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Glioblastoma , Pirimidinas , Sulfonamidas , Animais , Camundongos , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Citarabina/farmacologia , Citarabina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Apoptose
5.
J Hematol Oncol ; 17(1): 19, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644469

RESUMO

Bendamustine has been retrospectively shown to be an effective and safe lymphodepletion regimen prior to the anti-CD19 chimeric antigen receptor T cell (CART) products tisagenlecleucel and axicabtagene ciloleucel, as well as the anti-BCMA CART products idecabtagene vicleucel and ciltacabtagene autoleucel. However, bendamustine as lymphodepletion prior to lisocabtagene maraleucel (liso-cel), a 4-1BB co-stimulated, fixed CD4:CD8 ratio anti-CD19 CART product, has not been described yet. Thus, we studied a cohort of sequentially-treated patients with large B-cell lymphomas who received bendamustine lymphodepletion before liso-cel at the University of Pennsylvania between 5/2021 and 12/2023 (n = 31). Patients were evaluated for toxicities and responses. Of note, 7 patients (22.6%) would have dnot met the inclusion criteria for the registrational liso-cel clinical trials, mostly due to older age. Overall and complete response rates were 76.9% and 73.1%, respectively. At a median follow-up of 6.3 months, the 6-month progression-free and overall survival were 59.9% and 91.1%, respectively. Rates of cytokine-release syndrome (CRS) and neurotoxicity (ICANS) of any grade were 9.7% and 9.7%, respectively, with no grade ≥ 3 events. No infections were reported during the first 30 days following liso-cel infusion. Neutropenia ≥ grade 3 was observed in 29.0% of patients; thrombocytopenia ≥ grade 3 occurred in 9.7%. In conclusion, bendamustine lymphodepletion before liso-cel appears to be a strategy that can drive tumor responses while ensuring a mild toxicity profile.


Assuntos
Cloridrato de Bendamustina , Imunoterapia Adotiva , Humanos , Cloridrato de Bendamustina/uso terapêutico , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Estudos Retrospectivos , Adulto , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/efeitos adversos , Produtos Biológicos/uso terapêutico , Produtos Biológicos/efeitos adversos , Idoso de 80 Anos ou mais , Resultado do Tratamento
6.
CNS Neurosci Ther ; 30(4): e14711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644551

RESUMO

OBJECTIVE: To elucidate the relationship between USP19 and O(6)-methylguanine-DNA methyltransferase (MGMT) after temozolomide treatment in glioblastoma (GBM) patients with chemotherapy resistance. METHODS: Screening the deubiquitinase pannel and identifying the deubiquitinase directly interacts with and deubiquitination MGMT. Deubiquitination assay to confirm USP19 deubiquitinates MGMT. The colony formation and tumor growth study in xenograft assess USP19 affects the GBM sensitive to TMZ was performed by T98G, LN18, U251, and U87 cell lines. Immunohistochemistry staining and survival analysis were performed to explore how USP19 is correlated to MGMT in GBM clinical management. RESULTS: USP19 removes the ubiquitination of MGMT to facilitate the DNA methylation damage repair. Depletion of USP19 results in the glioblastoma cell sensitivity to temozolomide, which can be rescued by overexpressing MGMT. USP19 is overexpressed in glioblastoma patient samples, which positively correlates with the level of MGMT protein and poor prognosis in these patients. CONCLUSION: The regulation of MGMT ubiquitination by USP19 plays a critical role in DNA methylation damage repair and GBM patients' temozolomide chemotherapy response.


Assuntos
Antineoplásicos Alquilantes , Metilação de DNA , Metilases de Modificação do DNA , Enzimas Reparadoras do DNA , Resistencia a Medicamentos Antineoplásicos , Temozolomida , Proteínas Supressoras de Tumor , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Metilases de Modificação do DNA/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Metilação de DNA/efeitos dos fármacos , Camundongos Nus , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Camundongos , Masculino , Feminino , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Reparo do DNA/efeitos dos fármacos , Endopeptidases/metabolismo , Endopeptidases/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Ubiquitinação/efeitos dos fármacos
7.
J Cancer Res Clin Oncol ; 150(4): 212, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662247

RESUMO

BACKGROUND AND AIM: Morinda citrifolia fruit juice (noni) is an herbal remedy documented to have antioxidant properties. It has been suggested that prevention of carcinogen-DNA adduct formation and the antioxidant activity of NJ may contribute to the cancer preventive effect. In the present study, the antitumor activity of noni was investigated in the presence of cyclophosphamide (CYL) in vitro and in vivo. METHODS: In vitro breast cancer cells (MDA-MB-468) were used to measure the percentage of inhibition and the IC50. The in vivo antitumor activity of noni was studied by monitoring the mean survival time (MST), percentage increase in life span (%ILS), viable and non-viable cell count, tumor volume, body weight, and hematological and serum biochemical parameters in mice. Treatment with noni and CYL exhibited dose- and time-dependent cytotoxicity toward breast cancer cells. RESULTS: Individual treatment of noni and CYL exhibited dose- and time-dependent cytotoxicity on breast cancer cell lines, while in combination therapy of noni and CYL, noni enhances cytotoxic effect of CYL at 48 h than that at 24 h. Similar result was found in in vivo studies, the results of which revealed that alone treatment of CYL and noni suppressed tumor growth. However, combination treatment with CYL and noni presented better tumor inhibition than that of alone treatment of CYL and noni. On the contrary, CYL alone drastically attenuated hematological parameters, i.e., RBC, WBC, and Hb compared to normal and control groups, and this change was reversed and normalized by noni when given as combination therapy with CYL. Moreover, the levels of serum biochemical markers, i.e., AST, ALP, and ALT, were significantly increased in the control and CYL-treated groups than those in the normal group. In the combination treatment of noni and CYL, the above biochemical marker levels significantly decreased compared to CYL alone-treated group. CONCLUSIONS: The present study suggested that CYL treatment can cause serious myelotoxicity and hepatic injury in cancer patients. In conclusion, the combined use of noni with CYL potentially enhances the antitumor activity of CYL and suppresses myelotoxicity and hepatotoxicity induced by CYL in tumor-bearing mice.


Assuntos
Neoplasias da Mama , Ciclofosfamida , Morinda , Animais , Ciclofosfamida/farmacologia , Ciclofosfamida/efeitos adversos , Camundongos , Humanos , Feminino , Morinda/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sucos de Frutas e Vegetais , Ensaios Antitumorais Modelo de Xenoenxerto , Sinergismo Farmacológico , Extratos Vegetais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/efeitos adversos , Camundongos Endogâmicos BALB C , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/etiologia
8.
Cesk Slov Oftalmol ; 80(Ahead of print): 1001-1007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38538290

RESUMO

Retinoblastoma is the most common primary malignant intraocular tumor in children. Seeding, specifically the dispersion of the tumor into the adjacent compartments, represents a major parameter determining the degree of retinoblastoma according to the International Classification of Retinoblastoma. In this article we focused on vitreous seeding, one of the main limiting factors in the successful "eye preservation treatment" of retinoblastoma. This article presents an overview of the history of vitreous seeding of retinoblastoma, established treatment procedures and new-research modalities. The introduction of systemic chemotherapy in the treatment of retinoblastoma at the end of the 1990s represented a significant breakthrough, which enabled the progressive abandonment of radiotherapy with its attendant side effects. However, the attained concentrations of chemotherapeutics in the vitreous space during systemic chemotherapy are not sufficient for the treatment of vitreous seeding, and the toxic effects of systemic chemotherapy are not negligible. A significant change came with the advent of chemotherapy in situ, with the targeted administration of chemotherapeutic drugs, namely intra-arterial and intravitreal injections, contributing to the definitive eradication of external radiotherapy and a reduction of systemic chemotherapy. Although vitreous seeding remains the most common reason for the failure of intra-arterial chemotherapy, this technique has significantly influenced the original treatment regimen of children with retinoblastoma. However, intravitreal chemotherapy has made the greatest contribution to increasing the probability of preservation of the eyeball and visual functions in patients with advanced findings. Novel local drug delivery modalities, gene therapy, oncolytic viruses and immunotherapy from several ongoing preclinical and clinical trials may represent promising approaches in the treatment of vitreous retinoblastoma seeding, though no clinical trials have yet been completed for routine use.


Assuntos
Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Retinoblastoma/induzido quimicamente , Retinoblastoma/tratamento farmacológico , Neoplasias da Retina/induzido quimicamente , Neoplasias da Retina/tratamento farmacológico , Melfalan/efeitos adversos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Corpo Vítreo/patologia , Injeções Intravítreas , Estudos Retrospectivos
9.
J Neurooncol ; 167(1): 145-154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457090

RESUMO

PURPOSE: Adult Diffuse midline glioma (DMG) is a very rare disease. DMGs are currently treated with radiotherapy and chemotherapy even if only a few retrospective studies assessed the impact on overall survival (OS) of these approaches. METHODS: We carried out an Italian multicentric retrospective study of adult patients with H3K27-altered DMG to assess the effective role of systemic therapy in the treatment landscape of this rare tumor type. RESULTS: We evaluated 49 patients from 6 Institutions. The median age was 37.3 years (range 20.1-68.3). Most patients received biopsy as primary approach (n = 30, 61.2%) and radiation therapy after surgery (n = 39, 79.6%). 25 (51.0%) of patients received concurrent chemotherapy and 26 (53.1%) patients received adjuvant temozolomide. In univariate analysis, concurrent chemotherapy did not result in OS improvement while adjuvant temozolomide was associated with longer OS (21.2 vs. 9.0 months, HR 0.14, 0.05-0.41, p < 0.001). Multivariate analysis confirmed the role of adjuvant chemotherapy (HR 0.1, 95%CI: 0.03-0.34, p = 0.003). In patients who progressed after radiation and/or chemotherapy the administration of a second-line systemic treatment had a significantly favorable impact on survival (8.0 vs. 3.2 months, HR 0.2, 95%CI 0.1-0.65, p = 0.004). CONCLUSION: In our series, adjuvant treatment after radiotherapy can be useful in improving OS of patients with H3K27-altered DMG. When feasible another systemic treatment after treatment progression could be proposed.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Temozolomida/uso terapêutico , Estudos Retrospectivos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/uso terapêutico , Glioma/tratamento farmacológico , Glioma/patologia , Dacarbazina/uso terapêutico , Quimioterapia Adjuvante
10.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542190

RESUMO

A glioblastoma (GBM) is one of the most aggressive, infiltrative, and treatment-resistant malignancies of the central nervous system (CNS). The current standard of care for GBMs include maximally safe tumor resection, followed by concurrent adjuvant radiation treatment and chemotherapy with the DNA alkylating agent temozolomide (TMZ), which was approved by the FDA in 2005 based on a marginal increase (~2 months) in overall survival (OS) levels. This treatment approach, while initially successful in containing and treating GBM, almost invariably fails to prevent tumor recurrence. In addition to the limited therapeutic benefit, TMZ also causes debilitating adverse events (AEs) that significantly impact the quality of life of GBM patients. Some of the most common AEs include hematologic (e.g., thrombocytopenia, neutropenia, anemia) and non-hematologic (e.g., nausea, vomiting, constipation, dizziness) toxicities. Recurrent GBMs are often resistant to TMZ and other DNA-damaging agents. Thus, there is an urgent need to devise strategies to potentiate TMZ activity, to overcome drug resistance, and to reduce dose-dependent AEs. Here, we analyze major mechanisms of the TMZ resistance-mediated intracellular signaling activation of DNA repair pathways and the overexpression of drug transporters. We review some of the approaches investigated to counteract these mechanisms of resistance to TMZ, including the use of chemosensitizers and drug delivery strategies to enhance tumoral drug exposure.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/efeitos adversos , Qualidade de Vida , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , DNA/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
11.
Cancer Lett ; 588: 216812, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490327

RESUMO

The efficacy of temozolomide (TMZ) treatment in glioblastoma (GBM) is influenced by various mechanisms, mainly including the level of O6-methylguanine-DNA methyltransferase (MGMT) and the activity of DNA damage repair (DDR) pathways. In our previous study, we had proved that long non-coding RNA HOTAIR regulated the GBM progression and mediated DDR by interacting with EZH2, the catalytic subunit of PRC2. In this study, we developed a small-molecule inhibitor called EPIC-0628 that selectively disrupted the HOTAIR-EZH2 interaction and promoted ATF3 expression. The upregulation of ATF3 inhibited the recruitment of p300, p-p65, p-Stat3 and SP1 to the MGMT promoter. Hence, EPIC-0628 silenced MGMT expression. Besides, EPIC-0628 induced cell cycle arrest by increasing the expression of CDKN1A and impaired DNA double-strand break repair via suppressing the ATF3-p38-E2F1 pathway. Lastly, EPIC-0628 enhanced TMZ efficacy in GBM in vitro and vivo. Hence, this study provided evidence for the combination of epigenetic drugs EPIC-0628 with TMZ for GBM treatment through the above mechanisms.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/farmacologia , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Quebras de DNA de Cadeia Dupla , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Fator 3 Ativador da Transcrição/genética
12.
Cells ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534332

RESUMO

Glioblastoma, a deadly brain tumor, shows limited response to standard therapies like temozolomide (TMZ). Recent findings from the REGOMA trial underscore a significant survival improvement offered by Regorafenib (REGO) in recurrent glioblastoma. Our study aimed to propose a 3D ex vivo drug response precision medicine approach to investigate recurrent glioblastoma sensitivity to REGO and elucidate the underlying molecular mechanisms involved in tumor resistance or responsiveness to treatment. Three-dimensional glioblastoma organoids (GB-EXPs) obtained from 18 patients' resected recurrent glioblastoma tumors were treated with TMZ and REGO. Drug responses were evaluated using NAD(P)H FLIM, stratifying tumors as responders (Resp) or non-responders (NRs). Whole-exome sequencing was performed on 16 tissue samples, and whole-transcriptome analysis on 13 GB-EXPs treated and untreated. We found 35% (n = 9) and 77% (n = 20) of tumors responded to TMZ and REGO, respectively, with no instances of TMZ-Resp being REGO-NRs. Exome analysis revealed a unique mutational profile in REGO-Resp tumors compared to NR tumors. Transcriptome analysis identified distinct expression patterns in Resp and NR tumors, impacting Rho GTPase and NOTCH signaling, known to be involved in drug response. In conclusion, recurrent glioblastoma tumors were more responsive to REGO compared to TMZ treatment. Importantly, our approach enables a comprehensive longitudinal exploration of the molecular changes induced by treatment, unveiling promising biomarkers indicative of drug response.


Assuntos
Glioblastoma , Compostos de Fenilureia , Piridinas , Humanos , Antineoplásicos Alquilantes/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Recidiva Local de Neoplasia/patologia , Temozolomida/farmacologia
13.
PLoS One ; 19(3): e0300552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489314

RESUMO

Glioblastoma (GB), a highly aggressive primary brain tumor, presents a poor prognosis despite the current standard therapy, including radiotherapy and temozolomide (TMZ) chemotherapy. Tumor microtubes involving connexin 43 (Cx43) contribute to glioma progression and therapy resistance, suggesting Cx43 inhibition as a potential treatment strategy. This research aims to explore the adjuvant potential of tonabersat, a Cx43 gap junction modulator and blood-brain barrier-penetrating compound, in combination with the standard of care for GB. In addition, different administration schedules and timings to optimize tonabersat's therapeutic window are investigated. The F98 Fischer rat model will be utilized to investigate tonabersat's impact in a clinically relevant setting, by incorporating fractionated radiotherapy (three fractions of 9 Gy) and TMZ chemotherapy (29 mg/kg). This study will evaluate tonabersat's impact on tumor growth, survival, and treatment response through advanced imaging (CE T1-w MRI) and histological analysis. Results show extended survival in rats receiving tonabersat with standard care, highlighting its adjuvant potential. Daily tonabersat administration, both preceding and following radiotherapy, emerges as a promising approach for maximizing survival outcomes. The study suggests tonabersat's potential to reduce tumor invasiveness, providing a new avenue for GB treatment. In conclusion, this preclinical investigation highlights tonabersat's potential as an effective adjuvant treatment for GB, and its established safety profile from clinical trials in migraine treatment presents a promising foundation for further exploration.


Assuntos
Benzamidas , Benzopiranos , Neoplasias Encefálicas , Glioblastoma , Ratos , Animais , Glioblastoma/patologia , Conexina 43 , Padrão de Cuidado , Neoplasias Encefálicas/patologia , Temozolomida/uso terapêutico , Ratos Endogâmicos F344 , Antineoplásicos Alquilantes/uso terapêutico
14.
Mol Biol Rep ; 51(1): 433, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520591

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM), the most prevalent subgroup of neuroepithelial tumors, is characterized by dismal overall survival (OS). Several studies have linked O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation to OS in GBM patients. However, MGMT methylation frequencies vary geographically and across ethnicities, with limited data for South Asian populations, including Pakistan. This study aimed to analyze MGMT promoter methylation in Pakistani GBM patients. METHODS: Consecutive primary GBM patients diagnosed ≥ 18 years-of-age, with no prior chemotherapy or radiotherapy history, were retrospectively selected. DNA was isolated from formalin-fixed-paraffin-embedded tissues. MGMT promoter methylation was analyzed using methylation-specific PCR. Clinical, pathological, and treatment data were assessed using Fisher's exact/Chi-squared tests. OS was calculated using Kaplan-Meier analysis in SPSS 27.0.1. RESULTS: The study included 48 GBM patients, comprising 38 (79.2%) males and 10 (20.8%) females. The median diagnosis age was 49.5 years (range 18-70). MGMT methylation was observed in 87.5% (42/48) of all cases. Patients with MGMT methylation undergoing radiotherapy or radiotherapy plus chemotherapy exhibited significantly improved median OS of 7.2 months (95% CI, 3.7-10.7; P < 0.001) and 16.9 months (95% CI, 15.9-17.9; P < 0.001), respectively, compared to those undergoing surgical resection only (OS: 2.2 months, 95% CI, 0.8-3.6). CONCLUSION: This is the first comprehensive study highlighting a predominance of MGMT methylation in Pakistani GBM patients. Furthermore, our findings underscore the association of MGMT methylation with improved OS across diverse treatment modalities. Larger studies are imperative to validate our findings for better management of Pakistani GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Masculino , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Glioblastoma/patologia , Paquistão , Estudos Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilases de Modificação do DNA/genética , Metilação de DNA/genética , Enzimas Reparadoras do DNA/genética , DNA , Antineoplásicos Alquilantes/uso terapêutico , Proteínas Supressoras de Tumor/genética
15.
Org Biomol Chem ; 22(14): 2749-2753, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502038

RESUMO

Fluorescent chemosensors offer a direct means of measuring enzyme activity for cancer diagnosis, predicting drug resistance, and aiding in the discovery of new anticancer drugs. O6-methylguanine DNA methyltransferase (MGMT) is a predictor of resistance towards anticancer alkylating agents such as temozolomide. Using the fluorescent molecular rotor, 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ), we synthesized, and evaluated a MGMT fluorescent chemosensor derived from a chloromethyl-triazole covalent inhibitor, AA-CW236, a non-pseudosubstrate of MGMT. Our fluorescence probe covalently labelled the MGMT active site C145, producing a 18-fold increase in fluorescence. Compared to previous fluorescent probes derived from a substrate-based inhibitor, our probe had improved binding and reaction rate. Overall, our chloromethyl triazole-based fluorescence MGMT probe is a promising tool for measuring MGMT activity to predict temozolomide resistance.


Assuntos
Antineoplásicos , Guanina/análogos & derivados , Temozolomida , O(6)-Metilguanina-DNA Metiltransferase/genética , DNA , Antineoplásicos Alquilantes/farmacologia
16.
Eur J Cancer ; 202: 114004, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493668

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common devastating primary brain cancer in adults. In our clinical practice, median overall survival (mOS) of GBM patients seems increasing over time. METHODS: To address this observation, we have retrospectively analyzed the prognosis of 722 newly diagnosed GBM patients, aged below 70, in good clinical conditions (i.e. Karnofsky Performance Status -KPS- above 70%) and treated in our department according to the standard of care (SOC) between 2005 and 2018. Patients were divided into two groups according to the year of diagnosis (group 1: from 2005 to 2012; group 2: from 2013 to 2018). RESULTS: Characteristics of patients and tumors of both groups were very similar regarding confounding factors (age, KPS, MGMT promoter methylation status and treatments). Follow-up time was fixed at 24 months to ensure comparable survival times between both groups. Group 1 patients had a mOS of 19 months ([17.3-21.3]) while mOS of group 2 patients was not reached. The recent period of diagnosis was significantly associated with a longer mOS in univariate analysis (HR=0.64, 95% CI [0.51 - 0.81]), p < 0.001). Multivariate Cox analysis showed that the period of diagnosis remained significantly prognostic after adjustment on confounding factors (adjusted Hazard Ratio (aHR) 0.49, 95% CI [0.36-0.67], p < 0.001). CONCLUSION: This increase of mOS over time in newly diagnosed GBM patients could be explained by better management of potentially associated non-neurological diseases, optimization of validated SOC, better management of treatments side effects, supportive care and participation in clinical trials.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Idoso , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Estudos Retrospectivos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Prognóstico
17.
Cell Death Dis ; 15(3): 205, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467631

RESUMO

Temozolomide (TMZ), a DNA alkylating agent, has become the primary treatment for glioma, the most common malignancy of the central nervous system. Although TMZ-containing regimens produce significant clinical response rates, some patients inevitably suffer from inferior treatment outcomes or disease relapse, likely because of poor chemosensitivity of glioma cells due to a robust DNA damage response (DDR). GINS2, a subunit of DNA helicase, contributes to maintaining genomic stability and is highly expressed in various cancers, promoting their development. Here, we report that GINS2 was upregulated in TMZ-treated glioma cells and co-localized with γH2AX, indicating its participation in TMZ-induced DDR. Furthermore, GINS2 regulated the malignant phenotype and TMZ sensitivity of glioma cells, mostly by promoting DNA damage repair by affecting the mRNA stability of early growth response factor 1 (EGR1), which in turn regulates the transcription of epithelial cell-transforming sequence 2 (ECT2). We constructed a GINS2-EGR1-ECT2 prognostic model, which accurately predicted patient survival. Further, we screened Palbociclib/BIX-02189 which dampens GINS2 expression and synergistically inhibits glioma cell proliferation with TMZ. These findings delineate a novel mechanism by which GINS2 regulates the TMZ sensitivity of glioma cells and propose a promising combination therapy to treat glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Células Epiteliais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Cromossômicas não Histona
18.
BMC Cancer ; 24(1): 317, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454344

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer, and chemoresistance poses a significant challenge to the survival and prognosis of GBM. Although numerous regulatory mechanisms that contribute to chemoresistance have been identified, many questions remain unanswered. This study aims to identify the mechanism of temozolomide (TMZ) resistance in GBM. METHODS: Bioinformatics and antibody-based protein detection were used to examine the expression of E2F7 in gliomas and its correlation with prognosis. Additionally, IC50, cell viability, colony formation, apoptosis, doxorubicin (Dox) uptake, and intracranial transplantation were used to confirm the role of E2F7 in TMZ resistance, using our established TMZ-resistance (TMZ-R) model. Western blot and ChIP experiments provided confirmation of p53-driven regulation of E2F7. RESULTS: Elevated levels of E2F7 were detected in GBM tissue and were correlated with a poor prognosis for patients. E2F7 was found to be upregulated in TMZ-R tumors, and its high levels were linked to increased chemotherapy resistance by limiting drug uptake and decreasing DNA damage. The expression of E2F7 was also found to be regulated by the activation of p53. CONCLUSIONS: The high expression of E2F7, regulated by activated p53, confers chemoresistance to GBM cells by inhibiting drug uptake and DNA damage. These findings highlight the significant connection between sustained p53 activation and GBM chemoresistance, offering the potential for new strategies to overcome this resistance.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição E2F7/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Prognóstico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteína Supressora de Tumor p53/genética
19.
Front Immunol ; 15: 1299044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384458

RESUMO

Cellular therapies, including chimeric antigen receptor T cell therapies (CAR-T), while generally successful in hematologic malignancies, face substantial challenges against solid tumors such as glioblastoma (GBM) due to rapid growth, antigen heterogeneity, and inadequate depth of response to cytoreductive and immune therapies, We have previously shown that GBM constitutively express stress associated NKG2D ligands (NKG2DL) recognized by gamma delta (γδ) T cells, a minor lymphocyte subset that innately recognize target molecules via the γδ T cell receptor (TCR), NKG2D, and multiple other mechanisms. Given that NKG2DL expression is often insufficient on GBM cells to elicit a meaningful response to γδ T cell immunotherapy, we then demonstrated that NKG2DL expression can be transiently upregulated by activation of the DNA damage response (DDR) pathway using alkylating agents such as Temozolomide (TMZ). TMZ, however, is also toxic to γδ T cells. Using a p140K/MGMT lentivector, which confers resistance to TMZ by expression of O(6)-methylguanine-DNA-methyltransferase (MGMT), we genetically engineered γδ T cells that maintain full effector function in the presence of therapeutic doses of TMZ. We then validated a therapeutic system that we termed Drug Resistance Immunotherapy (DRI) that combines a standard regimen of TMZ concomitantly with simultaneous intracranial infusion of TMZ-resistant γδ T cells in a first-in-human Phase I clinical trial (NCT04165941). This manuscript will discuss DRI as a rational therapeutic approach to newly diagnosed GBM and the importance of repeated administration of DRI in combination with the standard-of-care Stupp regimen in patients with stable minimal residual disease.


Assuntos
Glioblastoma , Glioma , Humanos , Temozolomida/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Imunoterapia Adotiva , Glioma/tratamento farmacológico , Glioblastoma/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico
20.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398592

RESUMO

Glioblastoma multiforme (GBM), a grade IV (WHO classification) malignant brain tumor, poses significant challenges in treatment. The current standard treatment involves surgical tumor removal followed by radiation and chemotherapeutic interventions. However, despite these efforts, the median survival for GBM patients remains low. Temozolomide, an alkylating agent capable of crossing the blood-brain barrier, is currently the primary drug for GBM treatment. Its efficacy, however, is limited, leading to the exploration of combination treatments. In this study, we have investigated the synergistic effects of combining temozolomide with doxorubicin, a chemotherapeutic agent widely used against various cancers. Our experiments, conducted on both temozolomide-sensitive (U87) and -resistant cells (GBM43 and GBM6), have demonstrated a synergistic inhibition of brain cancer cells with this combination treatment. Notably, the combination enhanced doxorubicin uptake and induced higher apoptosis in temozolomide-resistant GBM43 cells. The significance of our findings lies in the potential application of this combination treatment, even in cases of temozolomide resistance. Despite doxorubicin's inability to cross the blood-brain barrier, our results open avenues for alternative delivery methods, such as conjugation with carriers like albumin or local administration at the surgical site through a hydrogel application system. Our study suggests that the synergistic interaction between temozolomide and doxorubicin holds promise for enhancing the efficacy of glioblastoma treatment. The positive outcomes observed in our experiments provide confidence in considering this strategy for the benefit of patients with glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Glioblastoma/patologia , Antineoplásicos Alquilantes/farmacologia , Resistencia a Medicamentos Antineoplásicos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...